Copied to
clipboard

G = C42.134D6order 192 = 26·3

134th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.134D6, C6.142- 1+4, (C4×Q8)⋊20S3, C4⋊C4.301D6, (Q8×C12)⋊18C2, (C4×Dic6)⋊40C2, (C2×Q8).206D6, C4.50(C4○D12), Dic3.Q810C2, C422S3.5C2, C423S3.2C2, (C2×C6).127C24, C4.D12.10C2, D63Q8.10C2, C2.24(Q8○D12), C4.Dic617C2, C12.6Q827C2, Dic3⋊Q810C2, C12.121(C4○D4), (C2×C12).624C23, (C4×C12).179C22, D6⋊C4.126C22, (C6×Q8).227C22, Dic3⋊C4.78C22, (C22×S3).49C23, C4⋊Dic3.370C22, C22.148(S3×C23), (C2×Dic3).58C23, (C4×Dic3).87C22, C2.15(Q8.15D6), C32(C22.35C24), (C2×Dic6).292C22, C6.57(C2×C4○D4), C4⋊C4⋊S3.1C2, C2.66(C2×C4○D12), (S3×C2×C4).77C22, (C3×C4⋊C4).355C22, (C2×C4).290(C22×S3), SmallGroup(192,1142)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.134D6
C1C3C6C2×C6C22×S3S3×C2×C4C4.D12 — C42.134D6
C3C2×C6 — C42.134D6
C1C22C4×Q8

Generators and relations for C42.134D6
 G = < a,b,c,d | a4=b4=1, c6=a2b2, d2=a2, ab=ba, cac-1=dad-1=a-1, bc=cb, dbd-1=a2b, dcd-1=b2c5 >

Subgroups: 408 in 192 conjugacy classes, 95 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C42, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, C2×Q8, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, C42⋊C2, C4×Q8, C4×Q8, C22⋊Q8, C42.C2, C422C2, C4⋊Q8, C4×Dic3, C4×Dic3, Dic3⋊C4, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, D6⋊C4, C4×C12, C4×C12, C3×C4⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C6×Q8, C22.35C24, C4×Dic6, C12.6Q8, C422S3, C423S3, Dic3.Q8, C4.Dic6, C4.D12, C4⋊C4⋊S3, Dic3⋊Q8, D63Q8, Q8×C12, C42.134D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2- 1+4, C4○D12, S3×C23, C22.35C24, C2×C4○D12, Q8.15D6, Q8○D12, C42.134D6

Smallest permutation representation of C42.134D6
On 96 points
Generators in S96
(1 50 42 91)(2 92 43 51)(3 52 44 93)(4 94 45 53)(5 54 46 95)(6 96 47 55)(7 56 48 85)(8 86 37 57)(9 58 38 87)(10 88 39 59)(11 60 40 89)(12 90 41 49)(13 35 78 61)(14 62 79 36)(15 25 80 63)(16 64 81 26)(17 27 82 65)(18 66 83 28)(19 29 84 67)(20 68 73 30)(21 31 74 69)(22 70 75 32)(23 33 76 71)(24 72 77 34)
(1 61 48 29)(2 62 37 30)(3 63 38 31)(4 64 39 32)(5 65 40 33)(6 66 41 34)(7 67 42 35)(8 68 43 36)(9 69 44 25)(10 70 45 26)(11 71 46 27)(12 72 47 28)(13 85 84 50)(14 86 73 51)(15 87 74 52)(16 88 75 53)(17 89 76 54)(18 90 77 55)(19 91 78 56)(20 92 79 57)(21 93 80 58)(22 94 81 59)(23 95 82 60)(24 96 83 49)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 42 47)(2 46 43 5)(3 4 44 45)(7 12 48 41)(8 40 37 11)(9 10 38 39)(13 83 78 18)(14 17 79 82)(15 81 80 16)(19 77 84 24)(20 23 73 76)(21 75 74 22)(25 64 63 26)(27 62 65 36)(28 35 66 61)(29 72 67 34)(30 33 68 71)(31 70 69 32)(49 85 90 56)(50 55 91 96)(51 95 92 54)(52 53 93 94)(57 89 86 60)(58 59 87 88)

G:=sub<Sym(96)| (1,50,42,91)(2,92,43,51)(3,52,44,93)(4,94,45,53)(5,54,46,95)(6,96,47,55)(7,56,48,85)(8,86,37,57)(9,58,38,87)(10,88,39,59)(11,60,40,89)(12,90,41,49)(13,35,78,61)(14,62,79,36)(15,25,80,63)(16,64,81,26)(17,27,82,65)(18,66,83,28)(19,29,84,67)(20,68,73,30)(21,31,74,69)(22,70,75,32)(23,33,76,71)(24,72,77,34), (1,61,48,29)(2,62,37,30)(3,63,38,31)(4,64,39,32)(5,65,40,33)(6,66,41,34)(7,67,42,35)(8,68,43,36)(9,69,44,25)(10,70,45,26)(11,71,46,27)(12,72,47,28)(13,85,84,50)(14,86,73,51)(15,87,74,52)(16,88,75,53)(17,89,76,54)(18,90,77,55)(19,91,78,56)(20,92,79,57)(21,93,80,58)(22,94,81,59)(23,95,82,60)(24,96,83,49), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,42,47)(2,46,43,5)(3,4,44,45)(7,12,48,41)(8,40,37,11)(9,10,38,39)(13,83,78,18)(14,17,79,82)(15,81,80,16)(19,77,84,24)(20,23,73,76)(21,75,74,22)(25,64,63,26)(27,62,65,36)(28,35,66,61)(29,72,67,34)(30,33,68,71)(31,70,69,32)(49,85,90,56)(50,55,91,96)(51,95,92,54)(52,53,93,94)(57,89,86,60)(58,59,87,88)>;

G:=Group( (1,50,42,91)(2,92,43,51)(3,52,44,93)(4,94,45,53)(5,54,46,95)(6,96,47,55)(7,56,48,85)(8,86,37,57)(9,58,38,87)(10,88,39,59)(11,60,40,89)(12,90,41,49)(13,35,78,61)(14,62,79,36)(15,25,80,63)(16,64,81,26)(17,27,82,65)(18,66,83,28)(19,29,84,67)(20,68,73,30)(21,31,74,69)(22,70,75,32)(23,33,76,71)(24,72,77,34), (1,61,48,29)(2,62,37,30)(3,63,38,31)(4,64,39,32)(5,65,40,33)(6,66,41,34)(7,67,42,35)(8,68,43,36)(9,69,44,25)(10,70,45,26)(11,71,46,27)(12,72,47,28)(13,85,84,50)(14,86,73,51)(15,87,74,52)(16,88,75,53)(17,89,76,54)(18,90,77,55)(19,91,78,56)(20,92,79,57)(21,93,80,58)(22,94,81,59)(23,95,82,60)(24,96,83,49), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,42,47)(2,46,43,5)(3,4,44,45)(7,12,48,41)(8,40,37,11)(9,10,38,39)(13,83,78,18)(14,17,79,82)(15,81,80,16)(19,77,84,24)(20,23,73,76)(21,75,74,22)(25,64,63,26)(27,62,65,36)(28,35,66,61)(29,72,67,34)(30,33,68,71)(31,70,69,32)(49,85,90,56)(50,55,91,96)(51,95,92,54)(52,53,93,94)(57,89,86,60)(58,59,87,88) );

G=PermutationGroup([[(1,50,42,91),(2,92,43,51),(3,52,44,93),(4,94,45,53),(5,54,46,95),(6,96,47,55),(7,56,48,85),(8,86,37,57),(9,58,38,87),(10,88,39,59),(11,60,40,89),(12,90,41,49),(13,35,78,61),(14,62,79,36),(15,25,80,63),(16,64,81,26),(17,27,82,65),(18,66,83,28),(19,29,84,67),(20,68,73,30),(21,31,74,69),(22,70,75,32),(23,33,76,71),(24,72,77,34)], [(1,61,48,29),(2,62,37,30),(3,63,38,31),(4,64,39,32),(5,65,40,33),(6,66,41,34),(7,67,42,35),(8,68,43,36),(9,69,44,25),(10,70,45,26),(11,71,46,27),(12,72,47,28),(13,85,84,50),(14,86,73,51),(15,87,74,52),(16,88,75,53),(17,89,76,54),(18,90,77,55),(19,91,78,56),(20,92,79,57),(21,93,80,58),(22,94,81,59),(23,95,82,60),(24,96,83,49)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,42,47),(2,46,43,5),(3,4,44,45),(7,12,48,41),(8,40,37,11),(9,10,38,39),(13,83,78,18),(14,17,79,82),(15,81,80,16),(19,77,84,24),(20,23,73,76),(21,75,74,22),(25,64,63,26),(27,62,65,36),(28,35,66,61),(29,72,67,34),(30,33,68,71),(31,70,69,32),(49,85,90,56),(50,55,91,96),(51,95,92,54),(52,53,93,94),(57,89,86,60),(58,59,87,88)]])

42 conjugacy classes

class 1 2A2B2C2D 3 4A···4F4G4H4I4J4K···4Q6A6B6C12A12B12C12D12E···12P
order1222234···444444···46661212121212···12
size11111222···2444412···1222222224···4

42 irreducible representations

dim111111111111222222444
type++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6C4○D4C4○D122- 1+4Q8.15D6Q8○D12
kernelC42.134D6C4×Dic6C12.6Q8C422S3C423S3Dic3.Q8C4.Dic6C4.D12C4⋊C4⋊S3Dic3⋊Q8D63Q8Q8×C12C4×Q8C42C4⋊C4C2×Q8C12C4C6C2C2
# reps112122112111133148222

Matrix representation of C42.134D6 in GL8(𝔽13)

10000000
01000000
00100000
00010000
000050100
00000515
00000080
00000008
,
50000000
05000000
00100000
00010000
00005200
00001800
00000001
00000010
,
01000000
120000000
000120000
001120000
0000120110
0000012512
00001010
00005201
,
012000000
120000000
001120000
000120000
0000120110
00005151
00001010
0000811012

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,10,1,8,0,0,0,0,0,0,5,0,8],[5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,2,8,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,12,0,1,5,0,0,0,0,0,12,0,2,0,0,0,0,11,5,1,0,0,0,0,0,0,12,0,1],[0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,12,5,1,8,0,0,0,0,0,1,0,11,0,0,0,0,11,5,1,0,0,0,0,0,0,1,0,12] >;

C42.134D6 in GAP, Magma, Sage, TeX

C_4^2._{134}D_6
% in TeX

G:=Group("C4^2.134D6");
// GroupNames label

G:=SmallGroup(192,1142);
// by ID

G=gap.SmallGroup(192,1142);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,758,219,268,675,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=a^2*b^2,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=b^2*c^5>;
// generators/relations

׿
×
𝔽